p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.99C23, C22.108C25, C24.510C23, C23.143C24, C4.822+ 1+4, C22.192+ 1+4, D42⋊17C2, D4○3(C4⋊D4), C4⋊Q8⋊95C22, D4⋊15(C4○D4), D4⋊5D4⋊24C2, Q8⋊6D4⋊22C2, D4⋊3Q8⋊28C2, (C4×D4)⋊52C22, (C2×C4).98C24, (C4×Q8)⋊51C22, C4⋊D4⋊30C22, C4⋊C4.302C23, C4⋊1D4⋊19C22, (C2×C42)⋊66C22, (C23×C4)⋊45C22, C22≀C2⋊35C22, C22.32C24⋊8C2, C42⋊2C2⋊6C22, (C2×D4).480C23, C4.4D4⋊86C22, (C22×D4)⋊39C22, C22⋊C4.31C23, C22⋊Q8⋊105C22, (C2×Q8).294C23, C42.C2⋊59C22, C22.19C24⋊33C2, C22.11C24⋊23C2, C42⋊C2⋊45C22, (C22×C4).377C23, C2.42(C2×2+ 1+4), C22.26C24⋊45C2, C22.D4⋊55C22, C22.47C24⋊23C2, C23.36C23⋊39C2, C22.49C24⋊17C2, C22.34C24⋊14C2, (C2×C4×D4)⋊94C2, (C2×C4⋊D4)⋊69C2, (C2×C4⋊C4)⋊78C22, C4.281(C2×C4○D4), (C2×C4○D4)⋊37C22, C22.44(C2×C4○D4), C2.64(C22×C4○D4), (C2×C22⋊C4)⋊53C22, SmallGroup(128,2251)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.108C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=1, g2=ba=ab, dcd=gcg-1=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 1084 in 626 conjugacy classes, 392 normal (50 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C42.C2, C42.C2, C42⋊2C2, C4⋊1D4, C4⋊1D4, C4⋊Q8, C23×C4, C22×D4, C22×D4, C2×C4○D4, C2×C4×D4, C22.11C24, C2×C4⋊D4, C22.19C24, C23.36C23, C22.26C24, C22.32C24, C22.34C24, D42, D42, D4⋊5D4, Q8⋊6D4, C22.47C24, D4⋊3Q8, C22.49C24, C22.108C25
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, C25, C22×C4○D4, C2×2+ 1+4, C22.108C25
(1 11)(2 12)(3 9)(4 10)(5 30)(6 31)(7 32)(8 29)(13 20)(14 17)(15 18)(16 19)(21 28)(22 25)(23 26)(24 27)
(1 9)(2 10)(3 11)(4 12)(5 32)(6 29)(7 30)(8 31)(13 18)(14 19)(15 20)(16 17)(21 26)(22 27)(23 28)(24 25)
(1 18)(2 16)(3 20)(4 14)(5 26)(6 24)(7 28)(8 22)(9 13)(10 17)(11 15)(12 19)(21 32)(23 30)(25 29)(27 31)
(1 27)(2 28)(3 25)(4 26)(5 17)(6 18)(7 19)(8 20)(9 22)(10 23)(11 24)(12 21)(13 29)(14 30)(15 31)(16 32)
(1 19)(2 20)(3 17)(4 18)(5 25)(6 26)(7 27)(8 28)(9 14)(10 15)(11 16)(12 13)(21 29)(22 30)(23 31)(24 32)
(5 30)(6 31)(7 32)(8 29)(21 28)(22 25)(23 26)(24 27)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
G:=sub<Sym(32)| (1,11)(2,12)(3,9)(4,10)(5,30)(6,31)(7,32)(8,29)(13,20)(14,17)(15,18)(16,19)(21,28)(22,25)(23,26)(24,27), (1,9)(2,10)(3,11)(4,12)(5,32)(6,29)(7,30)(8,31)(13,18)(14,19)(15,20)(16,17)(21,26)(22,27)(23,28)(24,25), (1,18)(2,16)(3,20)(4,14)(5,26)(6,24)(7,28)(8,22)(9,13)(10,17)(11,15)(12,19)(21,32)(23,30)(25,29)(27,31), (1,27)(2,28)(3,25)(4,26)(5,17)(6,18)(7,19)(8,20)(9,22)(10,23)(11,24)(12,21)(13,29)(14,30)(15,31)(16,32), (1,19)(2,20)(3,17)(4,18)(5,25)(6,26)(7,27)(8,28)(9,14)(10,15)(11,16)(12,13)(21,29)(22,30)(23,31)(24,32), (5,30)(6,31)(7,32)(8,29)(21,28)(22,25)(23,26)(24,27), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)>;
G:=Group( (1,11)(2,12)(3,9)(4,10)(5,30)(6,31)(7,32)(8,29)(13,20)(14,17)(15,18)(16,19)(21,28)(22,25)(23,26)(24,27), (1,9)(2,10)(3,11)(4,12)(5,32)(6,29)(7,30)(8,31)(13,18)(14,19)(15,20)(16,17)(21,26)(22,27)(23,28)(24,25), (1,18)(2,16)(3,20)(4,14)(5,26)(6,24)(7,28)(8,22)(9,13)(10,17)(11,15)(12,19)(21,32)(23,30)(25,29)(27,31), (1,27)(2,28)(3,25)(4,26)(5,17)(6,18)(7,19)(8,20)(9,22)(10,23)(11,24)(12,21)(13,29)(14,30)(15,31)(16,32), (1,19)(2,20)(3,17)(4,18)(5,25)(6,26)(7,27)(8,28)(9,14)(10,15)(11,16)(12,13)(21,29)(22,30)(23,31)(24,32), (5,30)(6,31)(7,32)(8,29)(21,28)(22,25)(23,26)(24,27), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32) );
G=PermutationGroup([[(1,11),(2,12),(3,9),(4,10),(5,30),(6,31),(7,32),(8,29),(13,20),(14,17),(15,18),(16,19),(21,28),(22,25),(23,26),(24,27)], [(1,9),(2,10),(3,11),(4,12),(5,32),(6,29),(7,30),(8,31),(13,18),(14,19),(15,20),(16,17),(21,26),(22,27),(23,28),(24,25)], [(1,18),(2,16),(3,20),(4,14),(5,26),(6,24),(7,28),(8,22),(9,13),(10,17),(11,15),(12,19),(21,32),(23,30),(25,29),(27,31)], [(1,27),(2,28),(3,25),(4,26),(5,17),(6,18),(7,19),(8,20),(9,22),(10,23),(11,24),(12,21),(13,29),(14,30),(15,31),(16,32)], [(1,19),(2,20),(3,17),(4,18),(5,25),(6,26),(7,27),(8,28),(9,14),(10,15),(11,16),(12,13),(21,29),(22,30),(23,31),(24,32)], [(5,30),(6,31),(7,32),(8,29),(21,28),(22,25),(23,26),(24,27)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | ··· | 2Q | 4A | ··· | 4L | 4M | ··· | 4Z |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2+ 1+4 | 2+ 1+4 |
kernel | C22.108C25 | C2×C4×D4 | C22.11C24 | C2×C4⋊D4 | C22.19C24 | C23.36C23 | C22.26C24 | C22.32C24 | C22.34C24 | D42 | D4⋊5D4 | Q8⋊6D4 | C22.47C24 | D4⋊3Q8 | C22.49C24 | D4 | C4 | C22 |
# reps | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 4 | 2 | 3 | 6 | 1 | 4 | 1 | 1 | 8 | 2 | 2 |
Matrix representation of C22.108C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 2 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 4 | 2 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 2 | 4 | 2 | 3 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 3 | 1 | 3 | 2 |
0 | 0 | 1 | 0 | 1 | 2 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 2 | 4 | 0 | 4 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 2 | 4 | 2 | 3 |
0 | 0 | 4 | 0 | 4 | 3 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,3,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,4,0,0,0,0,1,2,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,1,0,0,0,0,4,0,0,0,0,1,2,0,0,0,0,0,3,0,1],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,4,3,1,0,0,4,0,1,0,0,0,0,0,3,1,0,0,0,0,2,2],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,2,0,0,0,1,0,4,0,0,0,0,4,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,2,4,0,0,1,0,4,0,0,0,0,0,2,4,0,0,0,0,3,3] >;
C22.108C25 in GAP, Magma, Sage, TeX
C_2^2._{108}C_2^5
% in TeX
G:=Group("C2^2.108C2^5");
// GroupNames label
G:=SmallGroup(128,2251);
// by ID
G=gap.SmallGroup(128,2251);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,570,1684,242]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=1,g^2=b*a=a*b,d*c*d=g*c*g^-1=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations