Copied to
clipboard

G = C22.108C25order 128 = 27

89th central stem extension by C22 of C25

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.99C23, C22.108C25, C24.510C23, C23.143C24, C4.822+ 1+4, C22.192+ 1+4, D4217C2, D43(C4⋊D4), C4⋊Q895C22, D415(C4○D4), D45D424C2, Q86D422C2, D43Q828C2, (C4×D4)⋊52C22, (C2×C4).98C24, (C4×Q8)⋊51C22, C4⋊D430C22, C4⋊C4.302C23, C41D419C22, (C2×C42)⋊66C22, (C23×C4)⋊45C22, C22≀C235C22, C22.32C248C2, C422C26C22, (C2×D4).480C23, C4.4D486C22, (C22×D4)⋊39C22, C22⋊C4.31C23, C22⋊Q8105C22, (C2×Q8).294C23, C42.C259C22, C22.19C2433C2, C22.11C2423C2, C42⋊C245C22, (C22×C4).377C23, C2.42(C2×2+ 1+4), C22.26C2445C2, C22.D455C22, C22.47C2423C2, C23.36C2339C2, C22.49C2417C2, C22.34C2414C2, (C2×C4×D4)⋊94C2, (C2×C4⋊D4)⋊69C2, (C2×C4⋊C4)⋊78C22, C4.281(C2×C4○D4), (C2×C4○D4)⋊37C22, C22.44(C2×C4○D4), C2.64(C22×C4○D4), (C2×C22⋊C4)⋊53C22, SmallGroup(128,2251)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C22.108C25
C1C2C22C2×C4C22×C4C23×C4C2×C4×D4 — C22.108C25
C1C22 — C22.108C25
C1C22 — C22.108C25
C1C22 — C22.108C25

Generators and relations for C22.108C25
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=1, g2=ba=ab, dcd=gcg-1=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >

Subgroups: 1084 in 626 conjugacy classes, 392 normal (50 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C42.C2, C42.C2, C422C2, C41D4, C41D4, C4⋊Q8, C23×C4, C22×D4, C22×D4, C2×C4○D4, C2×C4×D4, C22.11C24, C2×C4⋊D4, C22.19C24, C23.36C23, C22.26C24, C22.32C24, C22.34C24, D42, D42, D45D4, Q86D4, C22.47C24, D43Q8, C22.49C24, C22.108C25
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, C25, C22×C4○D4, C2×2+ 1+4, C22.108C25

Smallest permutation representation of C22.108C25
On 32 points
Generators in S32
(1 11)(2 12)(3 9)(4 10)(5 30)(6 31)(7 32)(8 29)(13 20)(14 17)(15 18)(16 19)(21 28)(22 25)(23 26)(24 27)
(1 9)(2 10)(3 11)(4 12)(5 32)(6 29)(7 30)(8 31)(13 18)(14 19)(15 20)(16 17)(21 26)(22 27)(23 28)(24 25)
(1 18)(2 16)(3 20)(4 14)(5 26)(6 24)(7 28)(8 22)(9 13)(10 17)(11 15)(12 19)(21 32)(23 30)(25 29)(27 31)
(1 27)(2 28)(3 25)(4 26)(5 17)(6 18)(7 19)(8 20)(9 22)(10 23)(11 24)(12 21)(13 29)(14 30)(15 31)(16 32)
(1 19)(2 20)(3 17)(4 18)(5 25)(6 26)(7 27)(8 28)(9 14)(10 15)(11 16)(12 13)(21 29)(22 30)(23 31)(24 32)
(5 30)(6 31)(7 32)(8 29)(21 28)(22 25)(23 26)(24 27)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)

G:=sub<Sym(32)| (1,11)(2,12)(3,9)(4,10)(5,30)(6,31)(7,32)(8,29)(13,20)(14,17)(15,18)(16,19)(21,28)(22,25)(23,26)(24,27), (1,9)(2,10)(3,11)(4,12)(5,32)(6,29)(7,30)(8,31)(13,18)(14,19)(15,20)(16,17)(21,26)(22,27)(23,28)(24,25), (1,18)(2,16)(3,20)(4,14)(5,26)(6,24)(7,28)(8,22)(9,13)(10,17)(11,15)(12,19)(21,32)(23,30)(25,29)(27,31), (1,27)(2,28)(3,25)(4,26)(5,17)(6,18)(7,19)(8,20)(9,22)(10,23)(11,24)(12,21)(13,29)(14,30)(15,31)(16,32), (1,19)(2,20)(3,17)(4,18)(5,25)(6,26)(7,27)(8,28)(9,14)(10,15)(11,16)(12,13)(21,29)(22,30)(23,31)(24,32), (5,30)(6,31)(7,32)(8,29)(21,28)(22,25)(23,26)(24,27), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)>;

G:=Group( (1,11)(2,12)(3,9)(4,10)(5,30)(6,31)(7,32)(8,29)(13,20)(14,17)(15,18)(16,19)(21,28)(22,25)(23,26)(24,27), (1,9)(2,10)(3,11)(4,12)(5,32)(6,29)(7,30)(8,31)(13,18)(14,19)(15,20)(16,17)(21,26)(22,27)(23,28)(24,25), (1,18)(2,16)(3,20)(4,14)(5,26)(6,24)(7,28)(8,22)(9,13)(10,17)(11,15)(12,19)(21,32)(23,30)(25,29)(27,31), (1,27)(2,28)(3,25)(4,26)(5,17)(6,18)(7,19)(8,20)(9,22)(10,23)(11,24)(12,21)(13,29)(14,30)(15,31)(16,32), (1,19)(2,20)(3,17)(4,18)(5,25)(6,26)(7,27)(8,28)(9,14)(10,15)(11,16)(12,13)(21,29)(22,30)(23,31)(24,32), (5,30)(6,31)(7,32)(8,29)(21,28)(22,25)(23,26)(24,27), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32) );

G=PermutationGroup([[(1,11),(2,12),(3,9),(4,10),(5,30),(6,31),(7,32),(8,29),(13,20),(14,17),(15,18),(16,19),(21,28),(22,25),(23,26),(24,27)], [(1,9),(2,10),(3,11),(4,12),(5,32),(6,29),(7,30),(8,31),(13,18),(14,19),(15,20),(16,17),(21,26),(22,27),(23,28),(24,25)], [(1,18),(2,16),(3,20),(4,14),(5,26),(6,24),(7,28),(8,22),(9,13),(10,17),(11,15),(12,19),(21,32),(23,30),(25,29),(27,31)], [(1,27),(2,28),(3,25),(4,26),(5,17),(6,18),(7,19),(8,20),(9,22),(10,23),(11,24),(12,21),(13,29),(14,30),(15,31),(16,32)], [(1,19),(2,20),(3,17),(4,18),(5,25),(6,26),(7,27),(8,28),(9,14),(10,15),(11,16),(12,13),(21,29),(22,30),(23,31),(24,32)], [(5,30),(6,31),(7,32),(8,29),(21,28),(22,25),(23,26),(24,27)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)]])

44 conjugacy classes

class 1 2A2B2C2D···2I2J···2Q4A···4L4M···4Z
order12222···22···24···44···4
size11112···24···42···24···4

44 irreducible representations

dim111111111111111244
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2C4○D42+ 1+42+ 1+4
kernelC22.108C25C2×C4×D4C22.11C24C2×C4⋊D4C22.19C24C23.36C23C22.26C24C22.32C24C22.34C24D42D45D4Q86D4C22.47C24D43Q8C22.49C24D4C4C22
# reps112221142361411822

Matrix representation of C22.108C25 in GL6(𝔽5)

100000
010000
004000
000400
000040
000004
,
400000
040000
004000
000400
000040
000004
,
020000
300000
004000
000100
000010
000424
,
100000
010000
000010
002423
001000
000001
,
040000
400000
000400
004000
003132
001012
,
400000
040000
001000
000100
000040
002404
,
200000
020000
000100
001000
002423
004043

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,3,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,4,0,0,0,0,1,2,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,1,0,0,0,0,4,0,0,0,0,1,2,0,0,0,0,0,3,0,1],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,4,3,1,0,0,4,0,1,0,0,0,0,0,3,1,0,0,0,0,2,2],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,2,0,0,0,1,0,4,0,0,0,0,4,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,2,4,0,0,1,0,4,0,0,0,0,0,2,4,0,0,0,0,3,3] >;

C22.108C25 in GAP, Magma, Sage, TeX

C_2^2._{108}C_2^5
% in TeX

G:=Group("C2^2.108C2^5");
// GroupNames label

G:=SmallGroup(128,2251);
// by ID

G=gap.SmallGroup(128,2251);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,570,1684,242]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=1,g^2=b*a=a*b,d*c*d=g*c*g^-1=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽